КОЛЕБАНИЯ И ВОЛНЫ. Колебаниями называются процессы, при которых движения или состояния системы регулярно повторяются во времени. Наиболее наглядно демонстрирует колебательный процесс качающийся маятник, но колебания свойственны практически всем явлениям природы. Колебательные процессы характеризуются следующими физическими величинами.

Период колебаний Т – промежуток времени, через который состояние системы принимают одинаковые значения: u(t + T) = u(t).

Частота колебаний n или f – число колебаний в 1 секунду, величина, обратная периоду: n = 1/Т. Измеряется в герцах (Гц), имеет размерность с–1. Маятник, совершающий одно качание в секунду, колеблется с частотой 1 Гц. В расчетах нередко используют круговую, или цикличную частоту w = 2pn.

Фаза колебаний j – величина, показывающая, какая часть колебания прошла с начала процесса. Измеряется в угловых величинах – градусах или радианах.

Амплитуда колебаний А – максимальное значение, которое принимает колебательная система, «размах» колебания.

Периодические колебания могут иметь самую разную форму, но наибольший интерес представляют так называемые гармонические, или синусоидальные колебания. Математически они записываются в виде

u(t) = A sin j = A sin(wt + j0),

где A – амплитуда, j – фаза, j0 – ее начальное значение, w – круговая частота, t – аргумент функции, текущее время. В случае строго гармонического, незатухающего колебания, величины А, w и j0 не зависят от t.

Любое периодическое колебание самой сложной формы может быть представлено в виде суммы конечного числа гармонических колебаний, а непериодическое (например, импульс) – бесконечным их количеством (теорема Фурье).

Система, выведенная из равновесия и предоставленная сама себе, совершает свободные, или собственные колебания, частота которых определяется физическими параметрами системы. Собственные колебания также могут быть представлены в виде суммы гармонических, так называемых нормальных колебаний, или мод.

Возбуждение колебаний может происходить тремя путями. Если на систему действует периодическая сила, меняющаяся с частотой f (маятник раскачивают периодическими толчками), система будет колебаться с этой – вынужденной – частотой. Когда частота вынуждающей силы f равна или кратна частоте собственных колебаний системы n, возникает резонанс – резкое возрастание амплитуды колебаний.

Если параметры системы (например, длину подвеса маятника) периодически изменяют, происходит параметрическое возбуждение колебаний. Оно наиболее эффективно, когда частота изменения параметра системы равна ее удвоенной собственной частоте: fпар = 2nсоб.

Если колебательные движения возникают самопроизвольно (система «самовозбуждается»), говорят о возникновении автоколебаний, имеющих сложный характер.

Во время колебательных процессов происходит периодическое превращение потенциальной энергии системы в кинетическую. Например, отклонив маятник в сторону и, следовательно, подняв его на высоту h, ему сообщают потенциальную энергию mgh. Она полностью переходит в кинетическую энергию движения mv2/2, когда груз проходит положение равновесия и скорость его максимальна. Если при этом происходит потеря энергии, колебания становятся затухающими.

В физике отдельно рассматриваются колебания механические и электромагнитные – связанные колебания электрического и магнитного поля (свет, рентгеновское излучение, радио). В пространстве они распространяются в форме волн.

Волной называется возмущение (изменение состояния среды), которое распространяется в пространстве и несет энергию, не перенося вещества. Наиболее часто встречаются упругие волны, волны на поверхности жидкости и электромагнитные волны. Упругие волны могут возбуждаться только в среде (газе, жидкости, твердом теле), а электромагнитные волны распространяются и в вакууме.

Если возмущение волны направлено перпендикулярно направлению ее распространения, волна называется поперечной, если параллельно – продольной. К поперечным относятся волны, бегущие по поверхности воды и вдоль струны, а также электромагнитные волны – векторы напряженности электрического и магнитного полей перпендикулярны вектору скорости волны. Типичный пример продольной волны – звук.

Уравнение, описывающее волну, можно вывести из выражения для гармонических колебаний. Пусть в какой-то точке среды происходит периодическое движение по закону А = A0 sin wt. Это движение будет передаваться от слоя к слою – по среде побежит упругая волна. Точка, находящаяся на расстоянии x от точки возбуждения, станет совершать колебательные движения, отставая на время t, необходимое для прохождения волной расстояния х: t = x/c, где c – скорость волны. Поэтому законом ее движения будет

Ax = A0 sin w(tx/c),

или, так как w = 2p/T, где T - период колебаний,

Ax = A0 sin 2p(t/Tx/cT).

Это – уравнение синусоидальной, или монохроматической волны, распространяющейся со скоростью с в направлении х. Все точки волны в момент времени t имеют разные смещения. Но ряд точек, отстоящих на расстояние cT одна от другой, в любой момент времени смещены одинаково (т.к. аргументы синусов в уравнении отличаются на 2p и, следовательно, их значения равны). Это расстояние и есть длина волны l = сТ. Она равна пути, который проходит волна за один период колебания.

Фазы колебаний двух точек волны, находящихся на расстоянии Dх одна от другой, отличаются на Dj = 2pDх/l, и, следовательно, на 2p при расстоянии, кратном длине волны. Поверхность, во всех точках которой волна имеет одинаковые фазы, называется волновым фронтом. Распространение волны происходит перпендикулярно ему, поэтому оно может рассматриваться как движение волнового фронта в среде. Точки волнового фронта формально считают фиктивными источниками вторичных сферических волн, при сложении дающих волну исходной формы (принцип Гюйгенса-Френеля).

Скорость смещения элементов среды меняется по тому же закону, что и само смещение, но со сдвигом по фазе на p/2: скорость достигает максимума, когда смещение падает до нуля. То есть волна скоростей сдвинута относительно волны смещений (деформаций среды) по времени на Т/4, а в пространстве на l/4. Волна скоростей несет кинетическую энергию, а волна деформаций – потенциальную. Энергия все время переносится в направлении распространения волны +х со скоростью с.

Введенная выше скорость с отвечает распространению только бесконечной синусоидальной (монохроматической) волны. Она определяет скорость перемещения ее фазы j и называется фазовой скоростью сф. Но на практике гораздо чаще встречаются как волны более сложной формы, так и волны, ограниченные во времени (цуги), а также совместное распространение большого набора волн разной частоты (например, белый свет). Подобно сложным колебаниям, волновые цуги и негармонические волны могут быть представлены в виде суммы (суперпозиции) синусоидальных волн разных частот. Когда фазовые скорости всех этих волн одинаковы, то вся их группа (волновой пакет) движется с одной скоростью. Если же фазовая скорость волны зависит от ее частоты w, наблюдается дисперсия – волны различных частот идут с разной скоростью. Нормальная, или отрицательная дисперсия тем больше, чем выше частота волны. За счет дисперсии, например, луч белого света в призме разлагается в спектр, в каплях воды – в радугу. Волновой пакет, который можно представить как набор гармонических волн, лежащих в диапазоне w0 ± Dw, из-за дисперсии расплывается. Его форма – огибающая амплитуд компонент цуга – искажается, но перемещается в пространстве со скоростью vгр, называемой групповой скоростью. Если при распространении волнового пакета максимумы волн, его составляющих, движутся быстрее огибающей, фазовая скорость сигнала выше групповой: сф > vгр. При этом в хвостовой части пакета за счет сложения волн возникают все новые максимумы, которые передвигаются вперед и пропадают в его головной части. Примером нормальной дисперсии служат среды, прозрачные для света – стекла и жидкости.

В ряде случаев наблюдается также аномальная (положительная) дисперсия среды, при которой групповая скорость превышает фазовую: vгр > сф, причем возможна ситуация, когда эти скорости направлены в противоположные стороны. Максимумы волн появляются в головной части пакета, перемещаются назад и исчезают в его хвосте. Аномальная дисперсия наблюдается, например, при движении очень мелких (так называемых капиллярных) волн на воде (vгр = 2сф).

Все методы измерения времени и скорости распространения волн, базирующиеся на запаздывании сигналов, дают групповую скорость. Именно ее учитывают при лазерной, гидро- и радиолокации, зондировании атмосферы, в системах радиоуправления и т.п.

При распространении волн в среде происходит их поглощение – необратимый переход энергии волны в другие ее виды (в частности – в теплоту). Механизм поглощения волн разной природы различен, но поглощение в любом случае приводит к ослаблению амплитуды волны по экспоненциальному закону: А1 /А0 = еa, где a – так называемый логарифмический декремент затухания. Для звуковых волн, как правило, a ~ w2 : высокие звуки поглощаются значительно сильнее низких. Поглощение света – падение его интенсивности I – происходит по закону Бугера I = I0 exp (–kll), где exp (x) = ex, kl – показатель поглощения колебания с длиной волны l, l – путь, пройденный волной в среде.

Рассеяние звука на препятствиях и неоднородностях среды приводит к расплыванию звукового пучка и, как следствие, – к затуханию звука по мере его распространения. При размере неоднородности L < l /2 рассеяние волны отсутствует. Рассеяние света происходит по сложным законам и зависит не только от размера препятствий, но и от их физических характеристик. В природных условиях наиболее сильно проявляется рассеяние на атомах и молекулах, происходящее пропорционально w4 или, что то же самое, l-4 (закон Рэлея). Именно рэлеевским рассеянием обусловлен голубой цвет неба и красный – Солнца на закате. Когда размер частиц становится сравним с длиной волны света (r ~ l), рассеяние перестает зависеть от длины волны, свет рассеивается больше вперед, нежели назад. Рассеяние на крупных частицах (r >> l) происходит с учетом законов оптики – отражения и преломления света.

При сложении волн, разность фаз которых постоянна (см. КОГЕРЕНТНОСТЬ) возникает устойчивая картина интенсивности суммарных колебаний – интерференция. Отражение волны от стенки равносильно сложению двух волн, идущих навстречу одна другой с разностью фаз p. Их суперпозиция создает стоячую волну, в которой через каждую половину периода Т /2 лежат неподвижные точки (узлы), а между ними – точки, колеблющиеся с максимальной амплитудой А (пучности).

Волна, падающая на препятствие или проходящая сквозь отверстие, огибает их края и заходит в область тени, давая картину в виде системы полос. Это явление называется дифракцией; оно становится заметным, когда размер препятствия (диаметр отверстия) D сравним с длиной волны: D ~ l.

В поперечной волне может наблюдаться явление поляризации, при котором возмущение (смещение в упругой волне, векторы напряженности электрического и магнитного полей в электромагнитной) лежит в одной плоскости (линейная поляризация) или вращается (круговая поляризация), меняя при этом интенсивность (эллиптическая поляризация).

При движении источника волн навстречу наблюдателю (или, что то же самое – наблюдателя навстречу источнику) наблюдается повышение частоты f, при удалении – понижение (эффект Доплера). Это явление можно наблюдать возле железнодорожного пути, когда мимо проносится локомотив с сиреной. В тот момент, когда он оказывается рядом с наблюдателем, происходит заметное понижение тона гудка. Математически эффект записывается как f = f0 /(1 ± v /c), где f – наблюдаемая частота, f0 – частота излучаемой волны, v – относительная скорость источника, c – скорость волны. Знак «+» соответствует приближению источника, знак «–» – его удалению.

Несмотря на принципиально разную природу волн, законы, определяющие их распространение, имеют много общего. Так, упругие волны в жидкостях или газах и электромагнитные волны в однородном пространстве, излученные малым источником, описываются одним и тем же уравнением, а волны на воде, подобно свету и радиоволнам, испытывают интерференцию и дифракцию.

Сергей Транковсий

ЛИТЕРАТУРА

Флеминг Дж. Волны в воде, воздухе и эфире. М., – Л. Изд. АН СССР, 1937
Брэгг У. Мир света. Мир звука. М.: Наука, 1967
Бишоп Р. Колебания. М.: Наука, 1979