Поляризация света
Цель урока

Сформировать у школьников понятие «естественный и поляризованный свет»; познакомить с экспериментальным доказательством поперечности световых волн; изучить свойства поляризованного света, показать аналогию между поляризацией механических, электромагнитных и световых волн; сообщить о примерах использования поляроидов.

Урок по поляризации света является заключительными в теме «Волновая оптика». В связи с этим урок с использованием компьютерного моделирования можно построить как урок обобщающего повторения или часть урока отвести под решение задач по темам «Интерференция света», «Дифракция света». Мы предлагаем модель урока, на котором изучается новый материал по теме «Поляризация света», а затем проводится закрепление изученного материала на компьютерной модели. На данном уроке легко сочетать реальную демонстрацию с компьютерным моделированием, так как поляроиды можно дать детям в руки и показать гашение света при повороте одного из поляроидов.

№ п/п Этапы урока Время, мин Приемы и методы
1 Организационный момент 3
2 Объяснение нового материала по теме «Поляризация света» 28 Беседа, работа с учебником, демонстрация явления поляризации с помощью поляроидов и компьютерной модели «Закон Малюса»
3 Тест «Поляризация» 7 Работа на компьютере с тестом. Тест № 5
4 Анализ проделанной работы 5 Фронтальная беседа
5 Объяснение домашнего задания 2

 

Домашнее задание: § 74, задача № 1104, 1105.

 

Объяснение нового материала

Явления интерференции и дифракции не оставляют сомнений в том, что распространяющийся свет обладает свойствами волн. Но каких волн – продольных или поперечных?

Длительное время основатели волновой оптики Юнг и Френель считали световые волны продольными, то есть подобными звуковым волнам. В то время световые волны рассматривались как упругие волны в эфире, заполняющем пространство и проникающем внутрь всех тел. Такие волны, казалось, не могли быть поперечными, так как поперечные волны могут существовать только в твердом теле. Но как могут тела двигаться в твердом эфире, не встречая сопротивления? Ведь эфир не должен препятствовать движению тел. В противном случае не выполнялся бы закон инерции.

Однако постепенно набиралось все больше и больше экспериментальных фактов, которые никак не удавалось истолковать, считая световые волны продольными.

Опыты с турмалином

Рассмотрим подробно только один из экспериментов, очень простой и эффектный. Это опыт с кристаллами турмалина (прозрачными кристаллами зеленой окраски).

Продемонстрировать учащимся гашение света при повороте двух поляроидов. Кристалл турмалина имеет ось симметрии и принадлежит к числу так называемых одноосных кристаллов. Возьмем прямоугольную пластину турмалина, вырезанную таким образом, чтобы одна из ее граней была параллельна оси кристалла. Если направить нормально к такой пластине пучок света от электрической лампы или солнца, то вращение пластины вокруг пучка никакого изменения интенсивности света, прошедшего через нее, не вызовет (см. рис.). Можно подумать, что свет только частично поглотился в турмалине и приобрел зеленоватую окраску. Больше ничего не произошло. Но это не так. Световая волна приобрела новые свойства.

Эти новые свойства обнаруживаются, если пучок заставить пройти через второй точно такой же кристалл турмалина (см. рис. а), параллельный первому. При одинаково направленных осях кристаллов опять ничего интересного не происходит: просто световой пучок еще более ослабляется за счет поглощения во втором кристалле. Но если второй кристалл вращать, оставляя первый неподвижным (рис. б), то обнаружится удивительное явление – гашение света. По мере увеличения угла между осями интенсивность света уменьшается. И когда оси перпендикулярны друг другу, свет не проходит совсем (рис. в). Он целиком поглощается вторым кристаллом. Как это можно объяснить?

Поперечность световых волн

Из описанных выше опытов следует два факта: во-первых, что световая волна, идущая от источника света, полностью симметрична относительно направления распространения (при вращении кристалла вокруг луча в первом опыте интенсивность не менялась) и, во-вторых, что волна, вышедшая из первого кристалла, не обладает осевой симметрией (в зависимости от поворота второго кристалла относительно луча получается та или иная интенсивность прошедшего света).

Продольные волны обладают полной симметрией по отношению к направлению распространения (колебания происходят вдоль этого направления, и оно является осью симметрии волны). Поэтому объяснить опыт с вращением второй пластины, считая световую волну продольной, невозможно.

Полное объяснение опыта можно получить, сделав два предположения.

Первое предположение относится к самому свету. Свет – поперечная волна. Но в падающем от обычного источника пучке волн присутствуют колебания всевозможных направлений, перпендикулярных направлению распространения волн (см. рис.).

На компьютерной модели «Закон Малюса»

Продемонстрировать, что естественный свет содержит колебания во всех плоскостях.

Согласно этому предположению световая волна обладает осевой симметрией, являясь в то же время поперечной. Волны, например, на поверхности воды такой симметрией не обладают, так как колебания частиц воды происходят только в вертикальной плоскости.

Световая волна с колебаниями по всем направлениям, перпендикулярным направлению распространения, называется естественной. Такое название оправдано, так как в обычных условиях источники света создают именно такую волну. Данное предположение объясняет результат первого опыта. Вращение кристалла турмалина не меняет интенсивность прошедшего света, так как падающая волна обладает осевой симметрией (несмотря на то, что она поперечная).

Второе предположение, которое необходимо сделать, относится к кристаллу. Кристалл турмалина обладает способностью пропускать световые волны с колебаниями, лежащими в одной определенной плоскости (плоскость P на рисунке).

На компьютерной модели «Закон Малюса»

Продемонстрировать, что кристалл турмалина выделяет только одну плоскость колебаний света. Поворачивая поляризатор, а затем анализатор, можно показать, что интенсивность проходящего света меняется от максимального значения до нуля. Для гашения света угол между осями поляроидов должен быть 90°. Если оси поляроидов параллельны, то второй поляроид пропускает весь свет, прошедший сквозь первый.

Такой свет называется поляризованным, или, точнее, плоскополяризованным, в отличие от естественного света, который может быть назван также неполяризованным. Это предположение полностью объясняет результаты второго опыта. Из первого кристалла выходит плоскопо-ляризованная волна. При скрещенных кристаллах (угол между осями 90°) она не проходит сквозь второй кристалл. Если оси кристаллов составляют между собой некоторый угол, отличный от 90°, то проходят колебания, амплитуда которых равна проекции амплитуды волны, прошедшей через первый кристалл, на направление оси второго кристалла.

Итак, кристалл турмалина преобразует естественный свет в плоскополяризованный.

Механическая модель опытов с турмалином

Нетрудно построить простую наглядную механическую модель рассматриваемого явления. Можно создать поперечную волну в резиновом шнуре так, чтобы колебания быстро меняли свое направление в пространстве. Это аналог естественной световой волны. Пропустим теперь шнур сквозь узкий деревянный ящик (см. рис.). Из колебаний всевозможных направлений ящик «выделяет» колебания в одной определенной плоскости. Поэтому из ящика выходит поляризованная волна.

Если на ее пути имеется еще точно такой же ящик, но повернутый относительно первого на 90°, то колебания сквозь него не проходят. Волна целиком гасится.

Опыт

Если в кабинете есть механическая модель поляризации можно, ее продемонстрировать. Если такой модели нет, то можно эту модель проиллюстрировать фрагментами видеофильма «Поляризация».

Поляроиды

Не только кристаллы турмалина способны поляризовать свет. Таким же свойством, например, обладают так называемые поляроиды. Поляроид представляет собой тонкую (0,1 мм) пленку кристаллов герапатита, нанесенную на целлулоид или стеклянную пластинку. С поляроидом можно проделать те же опыты, что и с кристаллом турмалина. Преимущество поляроидов в том, что можно создавать большие поверхности, поляризующие свет. К недостаткам поляроидов относится фиолетовый оттенок, который они придают белому свету.

Прямыми опытами доказано, что световая волна является поперечной. В поляризованной световой волне колебания происходят в строго определенном направлении.

В заключение можно рассмотреть применение поляризации в технике и проиллюстрировать этот материал фрагментами видиофильма «Поляризация».