Вращательное движение

Вращательное движение является периодическим движением.

Рис. 1

Время, в течение которого совершается один полный оборот тела, называется периодом обращения.

Период обозначается буквой T.

Чтобы найти период обращения, надо время вращения разделить на число оборотов:

Физическая величина, равная отношению числа полных оборотов тела ко времени, в течение которого эти обороты совершены, называется частотой вращения.

Частота вращения обозначается буквой n.

Чтобы найти частоту вращения, надо число оборотов разделить на время, в течение которого эти обороты совершены:

Частота вращения и период обращения связаны друг с другом как взаимообратные величины: Период измеряется в секундах: [T] = 1 с.

Единица частоты – секунда в минус первой степени: [n] = 1 с–1.

Эта единица имеет собственное название – 1 герц (1 Гц).

Рис. 2

Проведем аналогию между вращательным и поступательным движениями.

Поступательно движущееся тело изменяет свое положение в пространстве относительно других тел.

Тела, совершающие вращательное движение поворачиваются на некоторый угол.

Если за любые равные промежутки времени поступательно движущееся тело совершает равные перемещения, движение называется равномерным.

Если за любые равные промежутки времени вращающееся тело поворачивается на один и тот же угол, то такое вращение называется равномерным. Характеристикой равномерного поступательного движения служит скорость Соответствующей характеристикой вращательного движения служит угловая скорость:

Угловая скорость – это физическая величина, равная отношению угла поворота тела ко времени, в течение которого этот поворот совершен.

Угловая скорость показывает, на какой угол поворачивается тело за единицу времени.

Чтобы получить единицу угловой скорости, нужно в ее определяющую формулу подставить единицу – 1 радиан, и времени – 1 с. Получаем: [ω] = 1

Аналогично можно ввести характеристику неравномерного вращения. Если видом неравномерного поступательного движения является равнопеременное движение, то для вращательного движения можно ввести понятие равнопеременного вращения.

Характеристикой равнопеременного поступательного движения является ускорение:

Соответственно, для вращательного движения можно ввести величину, определяемую отношением изменения угловой скорости ко времени, в течение которого это изменение происходит – угловое ускорение: Угловое ускорение показывает, на сколько изменилась угловая скорость за единицу времени.

Чтобы получить единицу углового ускорения, нужно в его определяющую формулу подставить единицы угловой скорости 1 рад/с и времени – 1 с. Получаем:

Продолжая аналогию дальше, запишем уравнение для перемещения при прямолинейном равноускоренном движении

Так как при вращении перемещению тела соответствует угол вращения, линейной скорости – угловая скорость, линейному ускорению – угловое ускорение, то аналогичное уравнение для вращательного движения будет иметь вид:

Другому уравнению для поступательного движения будет соответствовать уравнение для вращательного движения:

Метод, который использовался в данном случае, называется методом аналогий.

Точки тела, совершающего вращательное движение, поворачиваются относительно оси вращения на некоторые углы и движутся по дугам окружностей, проходя определенные пути. Таким образом, характеристиками вращательного движения являются и угловая, и линейная скорости.

Рис. 3

Линейная скорость точки направлена по касательной к окружности, по которой она движется.

Об этом свидетельствует слетающая с колес автомобиля грязь или искры, летящие от металлического предмета, прижатого к наждачному кругу.

Чем дальше от оси вращения находится точка, тем больше ее линейная скорость. Угловая же скорость точек, лежащих на одном радиусе, одинакова. Следовательно, линейная скорость точки прямо пропорциональна радиусу окружности, по которой она вращается.

За время, равное периоду, точка проходит путь, равный длине окружности. Её линейная скорость при этом равна Отношение же угла поворота ко времени поворота на этот угол равно угловой скорости

Таким образом, линейная скорость вращающейся точки связана с ее угловой скоростью соотношением:

При равномерном вращении скорость меняется по направлению, но не изменяется по величине.

Поскольку всякое изменение скорости характеризуется понятием ускорения, то для равномерного вращения следует ввести еще одно ускорение, изменяющееся не по величине, а по направлению. Это ускорение называют центростремительным.

Пусть вращающееся тело в начальный момент времени находится в точке A и скорость его направлена по касательной. В следующий момент времени тело находится в точке B. При этом скорость его изменилось только по направлению и направлена по касательной к окружности.

Найдем вектор разности скоростей, воспользовавшись правилом действия с векторами. Из чертежа видно, что вектор разности направлен в сторону близкую к центру окружности. Чем меньше угол поворота, тем ближе направлен вектор скорости к направлению на центр вращения.

При малом времени движения изменение положения тела незначительно. Поэтому можно считать, что вектор скорости характеризующий изменение скорости по направлению, направлен на центр. Отсюда и происходит название центростремительного ускорения.

Угловое же ускорение, характеризующее изменение скорости по величине, называют еще касательным или тангенциальным ускорением (при неравномерном вращении).

Получим выражение для центростремительного ускорения. Будем считать, что угол поворота очень мал. Соединим точки A и B. Угол MAN = φ по построению.

Мы имеем два равнобедренных треугольника. Треугольник OAB, ребра которого R и AB, и треугольник MAN, ребра которого и

Так как треугольники подобны (по двум сторонам и углу между ними), то можно записать:

Рис. 4

Дуга окружности и хорда практически равны из-за малости угла поворота. Поэтому дуга Следовательно, Получим

Разделив правую и левую части последнего уравнения на t, получим:

Отсюда Таким образом,

Полученная формула является формулой для расчета центростремительного ускорения.

Центростремительное ускорение, при движении тела по окружности, равно отношению квадрата скорости к радиусу окружности, по которой движется тело: