Неравномерное прямолинейное движение

При неравномерном движении тело может за равные промежутки времени проходить как равные, так и разные пути.

Для описания неравномерного движения вводится понятие средней скорости.

Средняя скорость это физическая величина, равная отношению всего пути, пройденного телом, ко всему времени его движения на рассматриваемом участке:  где L – весь путь, а t – все время движения на рассматриваемом участке.

Средняя скорость, по данному определению, величина скалярная потому, что путь и время величины скалярные.

Однако среднюю скорость можно определять и через перемещение согласно уравнению

В этом случае среднюю скорость следует считать величиной векторной потому, что она определяется через отношение векторной величины к скалярной.

Средняя скорость прохождения пути и средняя скорость перемещения – это две разные величины, которые могут характеризовать одно и то же движение.

При расчете средней скорости очень часто допускается ошибка, состоящая в том, что понятие средней скорости подменяется понятием среднего арифметического скоростей тела на разных участках движения. Чтобы показать неправомерность такой подмены рассмотрим задачу и проанализируем ее решение.

Пример 1Задача про половину пути и половину времени
Рис. 1

Из пункта A в пункт B выходит поезд. Половину всего пути поезд движется со скоростью 30 км/ч, а вторую половину пути – со скоростью 50 км/ч.

Чему равна средняя скорость движения поезда на участке AB?

Рис. 2

Движение поезда на участке AC и на участке CB равномерное. Взглянув на текст задачи, нередко сразу хочется дать ответ: υср = 40 км/ч.

Почему?

Да потому, что нам кажется, что для вычисления средней скорости вполне подходит формула, используемая для расчета среднего арифметического.

Давайте разберемся: можно ли использовать эту формулу и рассчитывать среднюю скорость путем нахождения полусуммы заданных скоростей.

Для этого рассмотрим несколько иную ситуацию.

Допустим, мы правы и средняя скорость действительно равна 40 км/ч.

Тогда решим другую задачу.

Из пункта A в пункт B выходит поезд. Половину всего времени (до точки C) он движется со скоростью 30 км/ч, а вторую половину времени – со скоростью 50 км/ч.

Чему равна средняя скорость поезда на участке AB?

Рис. 3

Как видно, тексты задач очень похожи, есть только «очень маленькая» разница.

Если в первом случае речь идет о половине пути, то во втором случае речь идет о половине времени.

Очевидно, что точка C во втором случае находится несколько ближе к точке A, чем в первом случае, и ожидать одинаковых ответов в первой и второй задаче, вероятно, нельзя.

Если мы, решая вторую задачу, так же дадим ответ, что средняя скорость равна полусумме скоростей на первом и втором участке, мы не можем быть уверены, что мы решили задачу правильно. Как быть?

Выход из положения следующий: дело в том, что средняя скорость не определяется через среднее арифметическое. Есть определяющее уравнение для средней скорости, согласно которому для нахождения средней скорости на некотором участке, надо весь путь, пройденный телом, поделить на все время движения:

Начинать решение задачи нужно именно с формулы, определяющей среднюю скорость, даже если нам кажется, что мы в каком-то случае можем использовать более простую формулу.

Будем двигаться от вопроса к известным величинам.

Неизвестную величину υср выражаем через другие величины – L0 и Δt0.

Оказывается, что обе эти величины неизвестны, поэтому мы должны выразить их через другие величины. Например, в первом случае: L0 = 2 ∙ L, а Δt0 = Δt1 + Δt2.

Подставим эти величины, соответственно, в числитель и знаменатель исходного уравнения.

Во втором случае мы поступаем точно так же. Нам не известен весь путь и все время. Выражаем их: и

Очевидно, что время движения на участке AB во втором случае и время движения на участке AB в первом случае различны.

В первом случае, поскольку нам неизвестны времена и мы попытаемся выразить и эти величины:   а во втором случае мы выражаем и :  

Подставляем выраженные величины в исходные уравнения.

Таким образом, в первой задаче имеем:

После преобразования получаем:

Во втором случае получаем а после преобразования:

Ответы, как и было предсказано, различны, но во втором случае мы получили, что средняя скорость действительно равняется полусумме скоростей.

Может возникнуть вопрос, а почему сразу нельзя воспользоваться этим уравнением и дать такой ответ?

Дело в том, что записав, что средняя скорость на участке AB во втором случае равна полусумме скоростей на первом и на втором участках, мы бы представили не решение задачи, а готовый ответ. Решение же, как видно, достаточно длинное, и начинается оно с определяющего уравнения. То, что мы в данном случае получили уравнение, которое хотели использовать изначально – чистая случайность.

При неравномерном движении скорость тела может непрерывно меняться. При таком движении скорость в любой последующей точке траектории будет отличаться от скорости в предыдущей точке.

Скорость тела в данный момент времени и в данной точке траектории называют мгновенной скоростью.

Чем больше промежуток времени Δt, тем средняя скорость больше отличается от мгновенной. И, наоборот, чем меньше промежуток времени, тем меньше средняя скорость отличается от интересующей нас мгновенной скорости.

Физическая величина, равная отношению достаточно малого перемещения на участке траектории (либо пройденного пути), к малому промежутку времени, в течение которого совершается это перемещение (либо проходится путь), называется мгновенной скоростью.

Определим мгновенную скорость как предел, к которому стремится средняя скорость на бесконечно малом промежутке времени:

Если речь идет о средней скорости перемещения, то мгновенная скорость является величиной векторной:

Если речь идет о средней скорости прохождения пути, то мгновенная скорость является величиной скалярной:

Часто встречаются случаи, когда при неравномерном движении скорость тела меняется за равные промежутки времени на одну и ту же величину.

Движение тела, при котором скорость тела за любые равные промежутки времени изменяется на одну и ту же величину, называется равнопеременным.


Соответственно, если скорость тела за любые равные промежутки времени не изменяется на одинаковую величину, то движение будет называться неравнопеременным.

При равнопеременном движении скорость тела может, как уменьшаться, так и увеличиваться.

Если скорость тела увеличивается, то движение называется равноускоренным, а если уменьшается – равнозамедленным.

Характеристикой равнопеременного движения служит физическая величина, называемая ускорением.

Ускорение – это векторная физическая величина, равная отношению изменения скорости тела ко времени, в течение которого это изменение произошло:


Ускорение при равнопеременном движении не зависит ни от изменения скорости, ни от времени изменения скорости.

Ускорение показывает, на сколько изменяется скорость тела за единицу времени.

Чтобы получить единицу ускорения, надо в определяющую формулу ускорения подставить единицы скорости – 1 м/с и времени – 1 с. Получаем: [a] = 1 м/с2.

Зная ускорение тела и его начальную скорость, можно найти скорость в любой наперед заданный момент времени:

В проекции на координатную ось 0X уравнение примет вид: υx = υ0x + ax ∙ Δt.