Условие

Бесконечная плоская ломаная A0A1...An..., все углы которой прямые, начинается в точке A0 с координатами x = 0, y = 1 и обходит начало координат O по часовой стрелке. Первое звено ломаной имеет длину 2 и параллельно биссектрисе 4-го координатного угла. Каждое из следующих звеньев пересекает одну из координатных осей и имеет наименьшую возможную при этом целочисленную длину. Расстояние OAn = ln. Сумма длин первых n звеньев ломаной равна sn. Доказать, что найдётся n, для которого $ {\frac{s_n}{l_n}}$ > 1958.

Показать решение