«Начала» Евклида. Определения

Трудно переоценить значение книги Евклида «Начала». В качестве учебника при школьном преподавании математики (особенно геометрии) эту книгу использовали вплоть до XX в. Идеи, высказанные в «Началах», на протяжении более чем двух тысячелетий оказывали стимулирующее воздействие на новые математические исследования. Классическая механика, лежащая в основе естествознания XVII–XIX вв., описывает мир как находящийся в абсолютном пространстве, устроенном по законам геометрии Евклида. Осуществленная в «Началах» попытка логического выведения целостной теории из ограниченного числа первоначальных положений вызвала многочисленные подражания: в их числе – основополагающая для классической механики книга И. Ньютона «Математические начала натуральной философии», а также философский трактат Б. Спинозы «Этика, излагаемая геометрическим методом».

«Начала» подводят итог предшествующему развитию греческой математики, объединяя в себе теории, содержавшиеся в не дошедших до нас трактатах Гиппократа Хиосского, Теэтета, Евдокса и др. Последующие математики ссылались на положения «Начал» как на нечто окончательно установленное. В то же время некоторые теории, разработанные ранее, в эту книгу не вошли: по-видимому, автор стремился дать в ней именно «начала», «элементы», на основе которых могут быть развиты все разделы современной ему математики. Хотя основное место в греческой математике, и в «Началах» в том числе, занимает геометрия, эта книга также содержит много важных сведений из греческой арифметики.

Греческое название книги – «Стойхейя» – исходно обозначало алфавит, а также элементы, в частности, те, из которых состоит мироздание; греки насчитывали четыре элемента – землю, воду, огонь и воздух (рус. «стихия» также происходит от греч. «стойхейя»). Философ-неоплатоник V в. н. э. Прокл в комментариях к «Началам» утверждает, что структура книги отображает устройство космоса: она начинается с самых простых понятий – точки и прямой – чтобы в конце концов придти к учению о правильных многогранниках, которые, согласно философии Платона, лежат в основе структуры мира (четыре элемента имеют формы четырех из пяти правильных многогранников, а весь мир в целом – форму пятого, додекаэдра).

Если математические тексты Древнего Востока представляют собой лишь сборники предписаний для решения тех или иных задач, то греческая математика очень рано пришла к осознанию важности доказательств, обоснований одних положений с помощью других, уже установленных ранее. Появился идеал научной системы, в которой, во-первых, используемые термины имели бы четкие определения, а во-вторых, совокупность утверждений логически строго выводилась бы из немногих первоначальных аксиом. Этот идеал со всей ясностью сформулирован в логических трактатах Аристотеля. Первые попытки аксиоматического изложения математики были осуществлены еще до Евклида, но именно его «Начала», по-видимому, стали наиболее совершенным произведением такого рода в античности, полностью затмившим достижения предшественников.

«Начала» состоят из тринадцати книг. Каждая книга начинается с определений используемых терминов; кроме того, в начале первой книги сформулированы аксиомы и постулаты. Далее идут «предложения», доказываемые на основе определений входящих в них терминов, а также на основе аксиом, постулатов и доказанных ранее предложений. Значительную часть предложений составляют задачи на построение циркулем и линейкой. В этих случаях приводятся способ построения и доказательство того, что построенная фигура удовлетворяет условию задачи.

В I книге приводятся аксиомы и постулаты, а затем излагаются основные свойства треугольников, параллелограммов, трапеций. Венчает книгу теорема Пифагора.
Во II книге излагаются основы геометрической алгебры.

III книга посвящена свойствам круга, его касательных и хорд.
В IV книге строятся правильные треугольник, четырехугольник, пятиугольник, десятиугольник. Изящное построение правильного пятнадцатиугольника, которым заканчивается книга, возможно, принадлежит самому Евклиду.
Книга V содержит общую теорию отношений величин.
В VI книге Евклид излагает учение о подобии и применяет его к решению геометрических задач, эквивалентных квадратным уравнениям.
Книги VII–IX посвящены арифметике – теории целых чисел и их отношений (т. е., фактически, рациональных чисел). Здесь рассматриваются свойства операций с такими числами и проблемы делимости, вводится алгоритм Евклида для поиска наибольшего общего делителя двух чисел, доказывается, что простых чисел бесконечно много.
Книга X, считающаяся одной из самых сложных, излагает классификацию квадратичных иррациональностей.
Книги XI–XIII посвящены стереометрии. Книга XI содержит основные факты о прямых и плоскостях в трехмерном пространстве, а также об объемах параллелепипедов и призм.
В книге XII с помощью довольно тонкой техники (т. н. метода исчерпывания) доказывается, что площади кругов пропорциональны квадратам их диаметров, а объемы шаров – кубам их диаметров.
В книге XIII излагается учение о правильных многогранниках.
Впоследствии к тексту Евклида начали присоединять еще книги XIV–XV, также посвященные правильным многогранникам. Книгу XIV написал математик Гипсикл (II в. до н. э.), книга XV составлена в школе Исидора Милетского (VI в. н. э.).

Определения

Аристотель справедливо отмечал, что нельзя определить все термины: определяя одни термины на основе других, мы в конце концов придем к первичным, неопределяемым терминам. В современных аксиоматических изложениях геометрии в качестве неопределяемых терминов обычно рассматриваются точка, прямая, плоскость и некоторые другие. Евклид, однако, стремился определить и эти термины тоже, например:

  • точка – это то, что не имеет частей;
  • линия – это длина без ширины;
  • прямая – это линия, которая равно расположена по отношению к точкам на ней;
  • поверхность – это то, что имеет только длину и ширину;
  • плоская поверхность есть та, которая равно расположена по отношению к прямым на ней;
  • граница есть то, что является оконечностью чего-либо.
Рис. 1. Основные геометрические объекты

Историки математики расходятся в мнениях, что именно имел в виду Евклид, давая эти определения. В любом случае такие определения имеют целью скорее описание определяемых объектов, которое должно отсылать к интуитивно ясному образу точки, прямой и т. д. Ввиду их расплывчатости такие определения не используются в доказательствах.

Определения, используемые в доказательствах – это, например, такие:

  • полукруг – это фигура, содержащаяся между диаметром и отсекаемой им частью окружности;
  • равносторонний треугольник – треугольник, имеющий три равные стороны;
  • параллельные суть прямые, которые находятся в одной плоскости и, будучи продолжены в обе стороны неограниченно, ни с той, ни с другой стороны между собой не встречаются;
  • говорят, что прямая касается круга, если она встречает круг, но при продолжении не пересекает круга.
Рис. 2. Определения, используемые в доказательствах

В идеальном случае все термины, встречающиеся в определениях, должны быть определены ранее либо принадлежать к узкому кругу неопределяемых терминов. В действительности Евклид определяет такие термины, как «круг», «окружность», «диаметр», «прямой угол», «треугольник», но не определяет понятий «содержащаяся между», «отсекаемая», «встречается», «пересекает» и т. д. Значения всех этих слов, по-видимому, должны быть ясны интуитивно, из обычного словоупотребления.

Многие современные математики, в частности, последователи так называемой школы формалистов (Д. Гильберт и др.), считают, что математическая теория должна строиться без каких-либо интуитивных образов. Любое математическое предложение должно логически выводиться из определений входящих в него понятий и из свойств неопределяемых объектов, каковые свойства в явной форме задаются аксиомами. Таким образом, «неопределяемые объекты» определяются всей совокупностью аксиом, и никакие другие «интуитивно ясные» свойства этих объектов не должны использоваться. При этом конкретные зрительные представления о «точке» как о чем-то очень маленьком, о «прямой» как о чем-то узком и длинном и т. д. не являются обязательным для построения геометрии. Например, под точкой могла бы пониматься пара чисел (xy), а под прямой – совокупность таких пар, удовлетворяющих уравнению ax + by + c = 0. Широко известна фраза Гильберта: «Следует добиться того, чтобы с равным успехом можно было говорить не о точках, прямых и плоскостях, а о столах, стульях и пивных кружках».