Условие

Некоторые из чисел a1, a2,...an равны +1, остальные равны -1. Доказать, что

2 sin$\displaystyle \left(\vphantom{ a_1+\frac{a_1a_2}{2}+\frac{a_1a_2a_3}{4}+\dots
+\frac{a_1a_2\cdot\ldots\cdot a_n}{2^{n-1}}}\right.$a1 + $\displaystyle {\frac{a_1a_2}{2}}$ + $\displaystyle {\frac{a_1a_2a_3}{4}}$ + ... + $\displaystyle {\frac{a_1a_2\cdot\ldots\cdot a_n}{2^{n-1}}}$$\displaystyle \left.\vphantom{ a_1+\frac{a_1a_2}{2}+\frac{a_1a_2a_3}{4}+\dots
+\frac{a_1a_2\cdot\ldots\cdot a_n}{2^{n-1}}}\right)$$\displaystyle {\frac{\pi}{4}}$ =
         = a1$\displaystyle \sqrt{2+a_2\sqrt{2+a_3\sqrt{2+\dots +a_n\sqrt{2}}}}$.

В частности, при a1 = a2 = ... = an = 1, имеем:

2 sin$\displaystyle \left(\vphantom{ 1+\frac{1}{2}+\frac{1}{4}+\dots +\frac{1}{2^{n-1}}}\right.$1 + $\displaystyle {\textstyle\frac{1}{2}}$ + $\displaystyle {\textstyle\frac{1}{4}}$ + ... + $\displaystyle {\frac{1}{2^{n-1}}}$$\displaystyle \left.\vphantom{ 1+\frac{1}{2}+\frac{1}{4}+\dots +\frac{1}{2^{n-1}}}\right)$$\displaystyle {\frac{\pi}{4}}$ = 2 cos$\displaystyle {\frac{\pi}{2^{n+1}}}$ =
         = $\displaystyle \sqrt{2+\sqrt{2+\dots +\sqrt{2}}}$.


Показать решение