Апории Зенона

Проблема – как, в конечном счете, устроены геометрические объекты, из чего они «состоят» – была важной проблемой для греческой философии. Эта проблема привлекла внимание и Зенона – представителя Элейской философской школы. Элейская школа выступала с парадоксальным учением, что существует только единое и неподвижное и неизменное бытие, повсюду одинаковое: хотя людям кажется, что бытие множественно и подвержено переменам, это мнение ведет к противоречиям и поэтому должно быть отброшено.

Наиболее известными и важными для математики стали сформулированные Зеноном четыре апории (т. е. парадокса), направленных против существования движения. По-видимому, первые две апории Зенона подразумевали, что пространство и время делимы до бесконечности, а другие две основывались на противоположном представлении, будто пространственная протяженность и временная длительность состоят из неделимых моментов. Зенон пытался показать, что каждое из двух противоположных воззрений в результате ведет к противоречию, а значит, должна быть отвергнута сама идея движения, которое представляет собой лишь иллюзию.

  • Деление пополам

    Движущееся тело никогда не достигнет конца пути, потому что оно сначала должно дойти до середины пути, потом до середины оставшегося пути, потом опять до середины остатка и т. д. – таким образом, прежде чем дойти до конца пути, тело должно пройти бесконечное множество середин, а это потребует бесконечного времени.

    Модель 1. Деление пополам
  • Ахиллес и черепаха

    Быстроногий Ахиллес никогда не сможет догнать медлительной черепахи, если в начале движения она находится на некотором расстоянии впереди Ахиллеса: пока Ахиллес достигнет черты, с которой стартовала черепаха, она сама проползет на некоторое расстояние, пусть и меньшее; пока Ахиллес пробежит это расстояние, черепаха продвинется еще дальше, и т. д.

    Модель 2. Ахиллес и черепаха
  • Стрела

    В каждый момент времени летящая стрела занимает равное самой себе пространство. Следовательно, она в течение некоторого времени покоится. Таким образом, она и вовсе не движется.

    Модель 3. Стрела
  • Стадион

    По стадиону мимо группы равных тел А1, А2, А3, А4 движутся в противоположные стороны с одинаковыми скоростями еще две такие же группы – В1, В2, В3, В4 и Г1, Г2, Г3, Г4. Раз они движутся с равной скоростью, то в равное время пройдут равное расстояние. Если за некоторое время первое из тел В пройдет мимо всех Г, то за это же время первое из тел Г пройдет мимо половины тел А, а значит, оно пройдет лишь половину того расстояния, который прошло тело В, а значит – так как В и Г движутся с равными скоростями – оно прошло и половину того времени, за которое тело В прошло все тела Г. С другой стороны, за одно и то же время первое из тел Г пройдет мимо всех В, а первое из В пройдет лишь половину тел А, и значит, в два раза меньшее расстояние, затратив в два раза меньшее время, чем тело Г, прошедшее все тела В. Получается, что одно и то же время и вдвое длиннее, и вдвое короче, чем оно же само.

    Модель 4. Стадион

Хотя большинство философов не могли принять странные выводы Зенона о несуществовании движения, поставленные Зеноном проблемы заставили более пристально вглядываться в понятия, связанные с пространством и временем. Так, Аристотель полагал, что пространство и время не состоят из некоторого числа отдельных точек и моментов, но представляют собой особый тип сущего – нечто непрерывное, или, как еще говорят, континуум (лат. continuum – непрерывное). Пространственные и временные отрезки в действительности делимы до бесконечности, но делимы лишь потенциально, в том смысле, что любой отрезок можно разделить некоторой точкой, то, что осталось, тоже можно разделить, и т. д., но невозможно в какой-то момент реализовать бесконечное количество делений, – точно так же, как всякий раз возможно продлить имеющийся отрезок на некоторую величину, но нельзя считать бесконечное число таких продлений уже реализованным. Невозможно иметь в наличии бесконечную прямую, и нельзя сказать, что на отрезке уже находится бесконечное количество точек. Вот если бы в первой апории идущий человек каждый раз, проходя середину очередного отрезка, останавливался бы, отмечая эту середину, – тогда его движение не было бы непрерывным и он никогда бы не смог пройти весь отрезок. Решение Аристотеля было принято многими математиками: с подобными соображениями связано и разграничение Евклида между прерывными числами, с одной стороны, и непрерывными величинами, с другой стороны (см. урок 6). Тем не менее, на этом рассмотрение бесконечности в математике не закончилось: так, уже в XIX в. Г. Кантор развил теорию множеств, позволявшую рассматривать отрезок как бесконечное множество точек. Такое рассмотрение позволило открыть новые ценные результаты, а также поставить новые интересные проблемы, связанные, в частности, с некоторыми противоречиями, содержащимися в теории бесконечных множеств.

Кроме того, апории Зенона связаны и с рядом других вопросов, касающихся математики (суммирование бесконечного числа слагаемых, относительность движения, соотношение математической теории и физической реальности и т. д.).

Интересно, а Вы что думаете об этих апориях?