Условие

На плоскости даны 2 окружности, одна внутри другой. Циркулем и линейкой построить такую точку O, что внешняя окружность получается из внутренней растяжением с центром в точке O. (Растяжение (или гомотетия с положительным коэффициентом) с центром в точке O – это преобразование плоскости, оставляющее точку O и все проходящие через нее прямые на месте и изменяющее все расстояния в одно и то же число раз.)

Показать решение