ТЕХНЕЦИЙ – технеций (лат. Technetium, символ Tc) – элемент 7 (VIIb) группы периодической системы, атомный номер 43. Технеций является самым легким из тех элементов периодической системы, у которых отсутствуют стабильные изотопы и первым элементом, полученным искусственно. К настоящему времени синтезировано 33 изотопа технеция с массовыми числами 86–118, наиболее стабильные из них – 97Tc (период полураспада 2,6·106 лет), 98Tc (1,5·106) и 99Tc (2,12·105 лет).

В соединениях технеций проявляет степени окисления от 0 до +7, наиболее устойчиво семивалентное состояние.

История открытия элемента. Направленные поиски элемента № 43 начались с момента открытия Д.И.Менделеевым периодического закона в 1869. В периодической таблице некоторые клетки были пустыми, так как отвечающие им элементы (среди них был и 43-й – экамарганец) еще не были известны. После открытия периодического закона многие авторы заявляли о выделении из различных минералов аналога марганца с атомным весом около ста и предлагали ему названия: дэвий (Керн, 1877), люций (Баррайр, 1896) и ниппоний (Огава, 1908), но все эти сообщения в дальнейшем не подтвердились.

В 1920-х поисками экамарганца занялась группа немецких ученых под руководством профессора Вальтера Ноддака. Проследив закономерности изменения свойств элементов по группам и периодам, они пришли к выводу, что по своим химическим свойствам элемент № 43 должен быть гораздо ближе не к марганцу, а к своим соседям по периоду: молибдену и осмию, поэтому искать его было нужно в платиновых и молибденовых рудах. Экспериментальная работа группы Ноддака продолжалась в течение двух с половиной лет, и в июне 1925 Вальтер Ноддак сделал сообщение об открытии элементов № 43 и № 75, которые предлагалось назвать мазурием и рением. В 1927 открытие рения было окончательно подтверждено, и все силы этой группы переключились на выделение мазурия. Ида Ноддак-Таке, сотрудница и жена Вальтера Ноддака, даже заявила, что «в скором времени мазурий, подобно рению, можно будет покупать в магазинах», но столь опрометчивому утверждению не суждено было сбыться. Немецкий химик В.Прандтль показал, что супруги приняли за мазурий примеси, не имеющие ничего общего с элементом № 43. После неудачи Ноддаков многие ученые начали сомневаться в существовании элемента № 43 в природе.

Еще в 1920-х сотрудник Ленинградского университета С.А.Щукарев заметил определенную закономерность в распределении радиоактивных изотопов, которую окончательно сформулировал в 1934 немецкий физик Г.Маттаух. Согласно правилу Маттауха – Щукарева в природе не могут существовать два стабильных изотопа с одинаковыми массовыми числами и ядерными зарядами, отличающимися на единицу. По крайней мере один из них должен быть радиоактивным. Элемент № 43 расположен между молибденом (атомная масса 95,9) и рутением (атомная масса 101,1), но все массовые числа от 96 до 102 заняты стабильными изотопами: Mo-96, Mo-97, Mo-98, Ru-99, Mo-100, Ru-101 и Ru-102. Следовательно, элемент № 43 не может иметь нерадиоактивных изотопов. Впрочем, это не означает, что его нельзя найти на Земле: ведь уран и торий тоже радиоактивны, но сохранились до нашего времени из-за большого периода полураспада. И все же их запасы за время существования земли (около 4,5 млрд. лет) уменьшились в 100 раз. Несложные расчеты показывают, что радиоактивный изотоп может в ощутимых количествах остаться на нашей планете лишь если его период полураспада превышает 150 млн. лет. После провала поисков группы Ноддака надежда обнаружить такой изотоп практически угасла. Сейчас известно, что наиболее стабильный изотоп технеция имеет период полураспада 2,6 миллиона лет, поэтому для изучения свойств элемента № 43 необходимо было создать его заново. За эту задачу взялся в 1936 молодой итальянский физик Эмилио Джино Сегре. Принципиальная возможность искусственного получения атомов была показана еще в 1919 великим английским физиком Эрнестом Резерфордом.

После окончания Римского университета и прохождения четырехлетней воинской службы Сегре работал в лаборатории Энрико Ферми пока не получил предложение возглавить кафедру физики в университете Палермо. Конечно, отправляясь туда, он надеялся продолжить работы по ядерной физике, но лаборатория, в которой ему предстояло работать, была очень скромной и не располагала к научным подвигам. В 1936 он отправился в командировку в США, в город Беркли, где в радиационной лаборатории Калифорнийского университета уже в течение нескольких лет действовал первый в мире ускоритель заряженных частиц – циклотрон. Во время работы в Беркли ему пришла в голову мысль проанализировать молибденовую пластину, которая служила для отклонения пучка ядер дейтерия – тяжелого изотопа водорода. «У нас были веские основания думать, – писал Сегре, – что молибден после бомбардировки его дейтронами должен превратиться в элемент с номером 43...» Действительно, в ядре атома молибдена 42 протона, а в ядре дейтерия – 1. Если бы эти частицы могли объединиться, то получилось бы ядро 43-го элемента. Природный молибден состоит из шести изотопов, значит, в облученной пластинке могли присутствовать несколько изотопов нового элемента. Сегре надеялся, что хотя бы некоторые из них являются достаточно долгоживущими, чтобы сохраниться в пластинке после возвращения в Италию, где он намеревался заняться поиском элемента № 43. Задача осложнялась еще и тем, что молибден, использованный для изготовления мишени, не был специально очищен, и в пластинке могли протекать ядерные реакции с участием примесей.

Руководитель радиационной лаборатории Эрнест Лоуренс разрешил Сегре забрать пластинку с собой, и 30 января 1937 в Палермо, Эмилио Сегре и минералог Карло Перье приступили к работе. Вначале они установили, что привезенный образец молибдена испускал бета-частицы, значит, в нем действительно присутствовали радиоактивные изотопы, но был ли среди них элемент № 43, ведь источниками обнаруженного излучения могли быть изотопы циркония, ниобия, рутения, рения, фосфора и самого молибдена? Для ответа на этот вопрос часть облученного молибдена растворили в царской водке (смеси соляной и азотной кислот), и химическим путем удалили радиоактивный фосфор, ниобий и цирконий, а затем осадили сульфид молибдена. Оставшийся раствор все еще был радиоактивен, в нем оставался рений и, возможно, элемент № 43. Теперь оставалось самое сложное – разделить эти два близких по свойствам элемента. Сегре и Перье справились с этой задачей. Они установили, что при осаждении сероводородом сульфида рения из концентрированного солянокислого раствора, часть активности оставалась в растворе. После контрольных опытов по отделению изотопов рутения и марганца стало ясно, что бета-частицы могут излучаться только атомами нового элемента, который назвали технецием от греческого слова tecnhós – «искусственный». Это название было окончательно утверждено на съезде химиков, состоявшемся в сентября 1949 в Амстердаме. Вся работа продолжалась более четырех месяцев и закончилась в июне 1937, в результате нее было получено всего лишь 10–10 грамма технеция.

Хотя в руках Сегре и Перье оказались ничтожные количества элемента № 43, они все же смогли определить некоторые его химические свойства и подтвердили предсказанное на основе периодического закона сходство технеция и рения. Понятно, что им хотелось больше узнать о новом элементе, но чтобы его изучать, нужно было иметь весовые количества технеция, а облученный молибден содержал слишком мало технеция, поэтому требовалось найти более подходящую кандидатуру на роль поставщика этого элемента. Ее поиски увенчались успехом в 1939, когда О.Ган и Ф.Штрассман обнаружили, что в «осколках», образующихся при делении урана-235 в ядерном реакторе под действием нейтронов, содержится довольно значительные количества долгоживущего изотопа 99Tc. В следующем году Эмилио Сегре и его сотрудница Ву Цзяньсюн смогли выделить его в чистом виде. На каждый килограмм таких «осколков» приходится до десяти граммов технеция-99. Поначалу технеций, получаемый из отходов ядерного реактора, стоил очень дорого, в тысячи раз дороже золота, но атомная энергетика развивалась очень бурно и к 1965 цена на «синтетический» металл упала до 90 долл. за грамм, его мировое производство исчислялось уже не миллиграммами, а сотнями граммов. Располагая такими количествами этого элемента, ученые смогли всесторонне изучить физические и химические свойства технеция и его соединений.

Нахождение технеция в природе. Несмотря на то, что период полураспада (T1/2) наиболее долгоживущего изотопа технеция – 97Tc составляет 2,6 млн. лет, что, казалось бы, полностью исключает возможность обнаружить этот элемент в земной коре, технеций может непрерывно образовываться на Земле в результате ядерных реакций. В 1956 Бойд и Ларсон предположили, что в земной коре присутствует технеций вторичного происхождения, образующийся при активации молибдена, ниобия и рутения жестким космическим излучением.

Есть и другой путь образования технеция. Ида Ноддак-Таке в одной из своих публикаций предсказала возможность спонтанного деления ядер урана, а в 1939 немецкие радиохимики Отто Ган и Фриц Штрассман подтвердили ее экспериментально. Одним из продуктов спонтанного деления являются атомы элемента № 43. В 1961 Курода, переработав около пяти килограммов урановой руды, смог убедительно доказать присутствие в ней технеция в количестве 10–9 грамма на килограмм руды.

В 1951 американский астроном Шарлотта Мур предположила, что технеций может присутствовать в небесных телах. Спустя год английский астрофизик Р.Мерилл при изучении спектров космических объектов обнаружил технеций в некоторых звездах из созвездий Андромеды и Кита. Его открытие в дальнейшем было подтверждено независимыми исследованиями, причем количество технеция на некоторых звездах мало отличается от содержания соседних стабильных элементов: циркония, ниобия, молибдена и рутения. Для объяснения этого факта предположили, что технеций образуется в звездах и в настоящее время в результате ядерных реакций. Это наблюдение опровергло все многочисленные теории дозвездного образования элементов и доказало, что звезды являются своеобразными «заводами» по производству химических элементов.

Получение технеция. Сейчас время технеций получают либо из отходов переработки ядерного топлива, либо из облученной в циклотроне молибденовой мишени.

При делении урана, вызванном медленными нейтронами, образуются два ядерных осколка – легкий и тяжелый. У образующихся изотопов есть избыток нейтронов и в результате бета-распада или испускания нейтронов они переходят в другие элементы, давая начало цепочкам радиоактивных превращений. В некоторых таких цепочках образуются изотопы технеция:

235U + 1n = 99Mo + 136Sn + 1n

99Mo = 99mTc + b– (T1/2 = 66 час)

99mTc = 99Tc (T1/2 = 6 час)

99Tc = 99Ru (стабильный) + 227 (T1/2 = 2,12·105 лет)

В эту цепочку входит изотоп 99mTc – ядерный изомер технеция-99. Ядра этих изотопов идентичны по своему нуклонному составу, но различаются по радиоактивным свойствам. Ядро 99mTc имеет более высокую энергию, и, теряя ее в виде кванта g-излучения, переходит в ядро 99Tc.

Технологические схемы концентрирования технеция и отделения его от сопутствующих элементов очень разнообразны. Они включают в себя комбинацию стадий дистилляции, осаждения, экстракции и ионообменной хроматографии. Отечественная схема переработки отработанных тепловыделяющих элементов (твэлов) ядерных реакторов предусматривает их механическое дробление, отделение металлической оболочки, растворение сердечника в азотной кислоте и экстракционное выделение урана и плутония. При этом технеций в форме пертехнетат-иона остается в растворе вместе с другими продуктами деления. При пропускании этого раствора через специально подобранную анионообменную смолу с последующей десорбцией азотной кислотой получают раствор пертехнециевой кислоты (HTcO4), из которого после нейтрализации осаждают сульфид технеция (VII) сероводородом:

2HTcO4 + 7H2S = Tc2S7 + 8H2O

Для более глубокой очистки технеция от продуктов деления сульфид технеция обрабатывают смесью пероксида водорода и аммиака:

Tc2S7 + 2NH3 + 7H2O2 = 2NH4TcO4 + 6H2O + 7S

Затем пертехнетат аммония экстрагируют из раствора и последующей кристаллизацией получают химически чистый препарат технеция.

Металлический технеций обычно получают восстановлением пертехнетата аммония или диоксида технеция в токе водорода при 800–1000° C или электрохимическим восстановлением пертехнетатов:

2NH4TcO4 + 7H2 = 2Tc + 2NH3 + 8H2O

Выделение технеция из облученного молибдена раньше было основным способом промышленного получения металла. Сейчас этот способ используется для получения технеция в лаборатории. Технеций-99m образуется при радиоактивном распаде молибдена-99. Большая разница периодов полураспада 99mTc и 99Mo позволяет использовать последний для периодического выделения технеция. Подобные пары радионуклидов известны под названием изотопных генераторов. Максимальное накопление 99mTc в генераторе 99Mo/99mTc происходит через 23 часа после каждой операции отделения изотопа от материнского молибдена-99, однако уже через 6 часов содержание технеция составляет половину от максимального. Это позволяет проводить выделение технеция-99m несколько раз в день. Известны 3 основных типа генераторов 99mTc по способу отделения дочернего изотопа: хроматографические, экстракционные и сублимационные. В хроматографических генераторах используется различие коэффициентов распределения технеция и молибдена на различных сорбентах. Обычно молибден фиксируют на оксидном носителе в форме молибдат- (MoO42–) или фосформолибдат-иона (H4[P(Mo2O7)6]3–). Накопившийся дочерний изотоп элюируют физиологическим раствором (из генераторов, используемых в ядерной медицине) или разбавленными растворами кислот. Для изготовления экстракционных генераторов облученную мишень растворяют в водном растворе гидроксида или карбоната калия. После экстракции метилэтилкетоном или другим веществом экстрагент удаляют выпариванием, а остающийся пертехнетат растворяют в воде. Действие сублимационных генераторов основано на большом различии летучестей высших оксидов молибдена и технеция. При прохождении нагретого газа-носителя (кислород) через нагретый до 700–800° C слой триоксида молибдена испарившийся гептаоксид технеция удаляется в холодную часть прибора, где и конденсируется. Каждому типу генераторов присущи свои характерные достоинства и недостатки, поэтому выпускаются генераторы всех вышеперечисленных типов.

Простое вещество. Основные физико-химические свойства технеция изучены на изотопе с массовым числом 99. Технеций – пластичный парамагнитный металл серебристо-серого цвета. Температура плавления около 2150° C, температура кипения » 4700° C, плотность 11,487 г/см3. Технеций имеет гексагональную кристаллическую решетку, в пленках толщиной менее 150Å – кубическую гранецентрированную. При температуре 8К технеций становится сверхпроводником II рода (см. также СВЕРХПРОВОДИМОСТЬ).

Химическая активность металлического технеция близка к активности рения – его соседа по подгруппе и зависит от степени измельченности. Так, компактный технеций медленно тускнеет во влажном воздухе и не изменяется в сухом, а порошкообразный быстро окисляется до высшего оксида:

4Tc + 7O2 = 2Tc2O7

При небольшом нагревании технеций реагирует с серой и галогенами с образованием соединений соединений в степени окисления +4 и +6:

Tc + 3F2 = TcF6 (золотисто-желтый)

Tc + 3Cl2 = TcCl6 (темно-зеленый)

Tc + 2Cl2 = TcCl4 (красно-коричневый)

Tc + 2S = TcS2

а при 700° C взаимодействует с углеродом, образуя карбид ТсС. Технеций растворяется в кислотах-окислителях (азотной и концентрированной серной), бромной воде и перекиси водорода:

Tc + 7HNO3 = HTcO4 + 7NO2 + 3H2O

Tc + 7Br2 + 4H2O = HTcO4 + 7HBr

Соединения технеция. Наибольший практический интерес представляют соединения семивалентного и четырехвалентного технеция.

Диоксид технеция TcO2 – важное соединение в технологической схеме получения технеция особой чистоты. TcO2 – порошок черного цвета с плотностью 6,9 г/см3, устойчивый на воздухе при комнатной температуре, сублимируется при 900–1100° С. При нагревании до 300° С диоксид технеция энергично реагирует с кислородом воздуха (с образованием Tc2O7), с фтором, хлором и бромом (с образованием оксогалогенидов). В нейтральных и щелочных водных растворах легко окисляется до технециевой кислоты или ее солей.

cO2 + 3O2 + 2H2O = 4HTcO4

Оксид технеция (VII) Tc2O7 – желто-оранжевое кристаллическое вещество, легко растворимое в воде с образованием бесцветного раствора технециевой кислоты:

Tc2O7 + H2O = 2HTcO4

Температура плавления 119,5° С, температура кипения 310,5° С. Tc2O7 является сильным окислителем и легко восстанавливается даже парами органических веществ. Служит исходным веществом для получения соединений технеция.

Пертехнетат аммония NH4TcO4 – бесцветное вещество, растворимое в воде, промежуточный продукт при получении металлического технеция.

Сульфид технеция (VII) – труднорастворимое вещество темно-коричневого цвета, промежуточное соединение при очистке технеция, при нагревании разлагается с образованием дисульфида TcS2. Получают сульфид технеция (VII) осаждением сероводородом из кислых растворов соединений семивалентного технеция:

2NH4TcO4 + 8H2S = Tc2S7 + (NH4)2S + 8H2O

Применение технеция и его соединений. Отсутствие стабильных изотопов у технеция с одной стороны препятствует его широкому использованию, а с другой – открывает перед ним новые горизонты.

Огромный ущерб человечеству наносит коррозия, «съедая» до 10% всего выплавляемого железа. Хотя известны рецепты изготовления нержавеющей стали, ее использование не всегда целесообразно по экономическим и техническим причинам. Защитить сталь от ржавления помогают некоторые химические вещества – ингибиторы, которые делают поверхность металла инертной по отношению к корродирующим агентам. В 1955 Картледжем была установлена чрезвычайно высокая пассивирующая способность солей технециевой кислоты. Дальнейшие исследования показали, что пертехнетаты – самые эффективные ингибиторы коррозии железа и углеродистой стали. Их действие проявляется уже при концентрации 10–4–10–5 моль/л и сохраняется до 250° С. Использование соединений технеция для защиты сталей ограничивается закрытыми технологическими системами во избежание попадания радионуклидов в окружающую среду. Вместе с тем, из-за высокой стойкости к g-радиолизу соли технециевой кислоты прекрасно подходят для предотвращения коррозии в ядерных реакторах с водяным охлаждением.

Многочисленные области применения технеция обязаны своим существованием его радиоактивности. Так, изотоп 99Tc используется для изготовления стандартных источников b-излучения для дефектоскопии, ионизации газов и изготовления стандартных эталонов. Благодаря большому периоду полураспада (212 тысяч лет) они могут очень долго работать без существенного снижения активности. Сейчас изотоп 99mTc занимает лидирующее положение в ядерной медицине. Технеций-99m – короткоживущий изотоп (период полураспада 6 часов). При изомерном переходе в 99Tc он испускает только g-кванты, что обеспечивает достаточную проникающую способность и значительно меньшую дозу облучения пациента по сравнению с другими изотопами. Пертехнетат-ион не обладает ярко выраженной селективностью по отношению к определенным клеткам, что позволяет применять его для диагностики поражения большинства органов. Технеций очень быстро (в течение одного дня) выводится из организма, поэтому применение 99mTc позволяет проводить повторное обследование одного и того же объекта через короткие промежутки времени, не допуская его переоблучения.

Юрий Крутяков

ЛИТЕРАТУРА

Котегов К.В., Павлов О.Н., Шведов В.П. Технеций. М., Атомиздат, 1965
Фигуровский Н.А. Открытие элементов и происхождение их названий. М., Наука, 1970
Спицын В.И., Кузина А.Ф. Технеций. М., Наука, 1981
Популярная библиотека химических элементов. М., Наука, 1983
Итоги науки и техники. Неорганическая химия, т. 9. М., ВИНИТИ, 1984
Третьяков Ю.Д., Мартыненко Л.И., Григорьев А.Н., Цивадзе А.Ю. Неорганическая химия, тт. 1, 2. М., «Химия», 2001