От V постулата к геометрии Лобачевского

Пятый постулат Евклида «Если прямая, падающая на две прямые, образует внутренние односторонние углы, в сумме меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы в сумме меньше двух прямых» многим математикам еще в античности казался каким-то не очень ясным, отчасти в связи со сложностью его формулировки.

Модель 1. Начала Евклида


Представлялось, что постулатами должны быть только элементарные предложения, простые по форме. В связи с этим 5-ый постулат стал предметом особого внимания математиков, причем исследования на эту тему можно разделить на два направления, на деле тесно связанные между собой. Первое стремилось к замене этого постулата более простым и интуитивно ясным, как, например, сформулированное еще Проклом утверждение «Через точку, не лежащую на данной прямой, можно провести только одну прямую, не пересекающуюся с данной»: именно в таком виде 5-ый постулат, вернее, эквивалентная ему аксиома о параллельных фигурирует в современных учебниках.

Модель 2. Начала Евклида


Представители второго направления пытались доказать пятый постулат на основе других, то есть превратить его в теорему. Попытки такого рода начали ряд арабских математиков средневековья: ал-Аббас ал-Джаухари (нач. IX в.), Сабит ибн Корра, Ибн ал-Хайсам, Омар Хайям, Насиреддин ат-Туси. Позже в эти исследования включились европейцы: писавшие по-древнееврейски Леви Бен Гершон (XIV в.) и Альфонсо (XV в.), а затем немец-иезуит Х. Клавий (1596), англичанин Дж. Валлис (1663) и др. Особенный интерес к этой проблеме возник в XVIII в.: с 1759 по 1800 г. вышло 55 сочинений, анализирующих данную проблему, в т. ч. весьма важные сочинения итальянца-иезуита Дж. Саккери и немца И. Г. Ламберта.

Доказательства обычно велись методом «от противного»: из допущения, что 5-ый постулат не выполняется, пытались вывести следствия, которые противоречили бы другим постулатам и аксиомам. В действительности, однако, в конечном итоге получали противоречие не с другими постулатами, а с неким явным или неявным «очевидным» предложением, которое, однако, было невозможно установить на основе других постулатов и аксиом евклидовой геометрии: таким образом, доказательства не достигали своей цели, – получалось, что на место 5-го постулата опять-таки ставилось какое-то другое равносильное ему утверждение. В качестве такого утверждения брались, например, следующие положения:

Рис. 1. Если две прямые удаляются друг от друга с одной стороны, они обязательно сближаются с другой стороны
Рис. 2. Существуют прямые, равноотстоящие друг от друга
Рис. 3. Две пересекающиеся прямые не могут быть параллельны одной и той же прямой
Рис. 4. Две сходящиеся прямые пересекаются
Рис. 5. Перпендикуляр к одной из параллельных прямых должен пересечь и вторую
Рис. 6. Из точки, находяйщейся внутри угла, всегда можно провести прямую, пересекающую обе его стороны

Геометрия, в которой эти утверждения не выполняются, конечно, не такова, как мы привыкли, но из этого еще не следует, что она невозможна или что эти утверждения вытекают из других постулатов и аксиом Евклида, так что во всех доказательствах были те или иные пробелы или натяжки. Клавий обосновывал допущение о том, что существуют прямые, равноотстоящие друг от друга, евклидовым «определением» прямой как линии, равно расположенной по отношению к точкам на ней. Валлис впервые положил в основание своего доказательства 5-го постулата «естественное» положение, согласно которому для любой фигуры существует подобная сколь угодно большого размера, и обосновывал это утверждение 3-м постулатом Евклида, утверждающим из всякого центра и всяким раствором может быть описан круг (в действительности утверждение о существовании, например, неравных подобных треугольников или даже окружностей эквивалентно 5-му постулату). А. М. Лежандр в последовательных изданиях учебника «Начала геометрии» (1794, 1800, 1823) приводил новые доказательства 5-го постулата, но внимательный анализ показывал пробелы в этих доказательствах. Подвергнув Лежандра справедливой критике, наш соотечественник С. Е. Гурьев в книге «Опыт о усовершенствовании элементов геометрии» (1798), однако, сам допустил ошибку в доказательстве 5-го постулата.

Довольно быстро была осознана связь между суммой углов треугольника и четырехугольника и 5-ым постулатом: 5-ый постулат следует из утверждения о том, что сумма углов треугольника равна двум прямым, которое можно вывести из существования прямоугольников. В связи с этим получил распространение подход (ему следовали Хайям, ат-Туси, Валлис, Саккери), при котором рассматривается четырехугольник, получающийся в результате откладывания равных отрезков на двух перпендикулярах к одной прямой. Исследуются три гипотезы: два верхних угла являются острыми, тупыми либо прямыми; при этом осуществляется попытка показать, что гипотезы тупых и острых углов ведут к противоречию.

Рис. 7. Пятый постулат связан с суммой углов четырехугольника


При другом подходе (его применяли Ибн ал-Хайсам, Ламберт) анализировались аналогичные три гипотезы для четырехугольника с тремя прямыми углами.

Рис. 8. Связь между суммой углов четырехугольника и пятым постулатом Евклида.
Три прямых угла


Саккери и Ламберт показали, что гипотезы тупых углов действительно ведут к противоречию, но им не удалось найти противоречия при рассмотрении гипотез острых углов: вывод о таком противоречии Саккери сделал лишь в результате ошибки, а Ламберт заключил, что видимое отсутствие противоречия в гипотезе острого угла связано с какой-то фундаментальной причиной. Ламберт нашел, что, при принятии гипотезы острого угла, сумма углов каждого треугольника меньше 180° на величину, пропорциональную его площади, и сравнил с этим открытое в нач. XVII в. положение, согласно которому площадь сферического треугольника, напротив, больше 180° на величину, пропорциональную его площади.

В 1763 г. Г. С. Клюгель опубликовал «Обзор важнейших попыток доказательства теории параллельных линий», где рассмотрел около 30 доказательств 5-го постулата и выявил в них ошибки. Клюгель заключил, что Евклид вполне обосновано поместил свое утверждение среди постулатов.

Тем не менее, попытки доказательства 5-го постулата сыграли весьма важную роль: пытаясь привести противоположные ему утверждения к противоречию, указанные исследователи на деле открыли многие важные теоремы неевклидовой геометрии – в частности, такой геометрии, где место 5-го постулата занимает утверждение о возможности провести через заданную точку, по крайней мере, двух прямых, не пересекающих данную. Это утверждение, эквивалентное гипотезе острого угла, и было положено в основу первооткрывателями неевклидовой геометрии.

К мысли о том, что допущение альтернативы 5-му постулату ведет к построению геометрии, отличной от евклидовой, но столь же непротиворечивой, независимо пришли несколько ученых: К. Ф. Гаусс, Н. И. Лобачевский и Я. Бояи (а также Ф. К. Швейкарт и Ф. А. Тауринус, чей вклад в новую геометрию, впрочем, был более скромным и которые не публиковали своих исследований). Гаусс, судя по записям, сохранившимся в его архиве (и опубликованным только в 1860-е гг.), осознал возможность новой геометрии еще в 1810-е гг., но также никогда не публиковал своих открытий на эту тему: «Я опасаюсь крика беотийцев (т. е. глупцов: жители области Беотия считались в Древней Греции самыми глупыми), если выскажу мои воззрения целиком», – писал он в 1829 г. своему другу математику Ф. В. Бесселю. Непонимание в полной мере выпало на долю Лобачевского, сделавшего первый доклад о новой геометрии в 1826 г. и опубликовавшего полученные результаты в 1829 г. В 1842 г. Гаусс добился избрания Лобачевского членом-корреспондентом Геттингенского ученого общества: это было единственным признанием заслуг Лобачевского при жизни. Отец Я. Бояи – математик Фаркаш Бояи, также пытавшийся доказать 5-й постулат – предостерегал сына от исследований в этом направлении: «...это может лишить тебя твоего досуга, здоровья, покоя, всех радостей жизни. Эта черная пропасть в состоянии, быть может, поглотить тысячу таких титанов, как Ньютон, на Земле это никогда не прояснится...». Тем не менее, Я. Бояи в 1832 г. опубликовал свои результаты в приложении к учебнику геометрии, написанному его отцом. Бояи также не добился признания, к тому же был огорчен тем, что Лобачевский опередил его: больше неевклидовой геометрией он не занимался. Так что только Лобачевский в течение всей оставшейся жизни, во-первых, продолжал исследования в новой области, а во-вторых, пропагандировал свои идеи, опубликовал еще ряд книг и статей по новой геометрии.

Итак, в плоскости Лобачевского через точку C вне данной прямой AB проходят по крайней мере две прямые, не пересекающие AB. Все прямые, проходящие через C, делятся на два класса – на пересекающие и на не пересекающие AB. Эти последние лежат в некотором угле, образованном двумя крайними прямыми, не пересекающими AB. Именно эти прямые Лобачевский называет параллельными прямой AB, а угол между ними и перпендикуляром – углом параллельности. Этот угол зависит от расстояния от точки C до прямой AB: чем больше это расстояние, тем меньше угол параллельности. Прямые, лежащие внутри угла, называются расходящимися по отношению к AB.

Рис. 9. Отношения параллельности на плоскости Лобачевского


Любые две расходящиеся прямые p и q имеют единственный общий перпендикуляр t, который является самым коротким отрезкам от одной до другой. Если точка M движется по p в направлении от t, то расстояние от M до q будет возрастать до бесконечности, причем основания перпендикуляров, опущенных из M на q, заполнят лишь конечный отрезок.

Рис. 10. Расходящиеся прямые p и q на плоскости Лобачевского, t – их единственный перпендикуляр


Если прямые p и q пересекают друг друга, то проекции точек одной из них на другую также заполняют ограниченный отрезок.

Рис. 11. Пересекающиеся прямые p и q на плоскости Лобачевского


Если прямые p и q параллельны, то в одном направлении расстояния между их точками неограниченно убывают, а в другом неограниченно возрастают; одна прямая проецируется на луч другой.

Рис. 12. Параллельные прямые p и q на плоскости Лобачевского


На рисунках показаны различные взаимные положения прямых p и q, возможные в геометрии Лобачевского; r и s – перпендикуляры, параллельные q. (Мы вынуждены рисовать искривленную линию q, хотя речь идет о прямой. Даже если бы наш мир в целом подчинялся бы законам геометрии Лобачевского, мы бы все равно не смогли изобразить в малом масштабе без искажений то, как все выглядит в большом: в геометрии Лобачевского нет подобных фигур, которые не были бы равными).

Внутри угла существует прямая, параллельная обеим сторонам угла. Она делит все точки внутри угла на два типа: через точки первого типа можно провести прямые, пересекающие обе стороны угла; через точки второго типа нельзя провести ни одной такой прямой. То же верно и для пространства между параллельными прямыми. Между двумя расходящимися прямыми есть две прямые, параллельные им обеим; они делят пространство между расходящимися прямыми на три области: через точки в одной области можно провести прямые, пересекающие обе стороны угла; через точки в двух других областях таких прямых провести нельзя.

Рис. 13. Внутри угла на плоскости Лобачевского существует прямая, параллельная обеим сторонам угла


На диаметр окружности всегда опирается острый, а не прямой угол. Сторона вписанного в окружность правильного шестиугольника всегда больше ее радиуса. Для любого n > 6 можно построить такую окружность, что сторона вписанного в нее правильного n-угольника равна ее радиусу.

Рис. 14. На диаметр окружности на плоскости Лобачевского всегда опирается острый, а не прямой угол


Лобачевский интересовался вопросом о геометрии физического пространства, в частности, используя данные астрономических наблюдений подсчитывал сумму углов больших, межзвездных треугольников: однако отличие этой суммы углов от 180° лежало целиком внутри ошибки наблюдений. Непонимание, выпавшее на долю Лобачевского, который сам называл свою геометрию «воображаемой», во многом связано с тем, что в его время такие идеи казались чистыми абстракциями и игрой воображения. Действительно ли новая геометрия непротиворечива? (Ведь если даже Лобачевскому не удалось встретить противоречия, это не гарантирует, что оно не будет обнаружено впоследствии). Насколько она соотносится с реальным миром, а также с другими областями математики? Это стало ясно далеко не сразу, и успех, в конечном итоге выпавший на долю новых идей, был связан с открытием моделей новой геометрии.