Условие


На бесконечной во все стороны шахматной доске выделено некоторое множество клеток A. На всех клетках доски, кроме множества A, стоят короли. Все короли могут по команде одновременно сделать ход, заключающийся в том, что король либо остается на месте, либо занимает соседнее поле, то есть делает "ход короля". При этом он может занять и то поле, с которого сходит другой король, но в результате хода двум королям оказаться в одной клетке запрещается.
Существует ли такое K и такой способ движения королей, что после K ходов вся доска будет заполнена королями? Рассмотрите варианты:
а)(9) A есть множество всех клеток, у которых обе координаты кратны 100 (предполагается, что одна горизонтальная и одна вертикальная линии занумерованы всеми целыми числами от минус бесконечности до бесконечности и каждая клетка доски обозначается двумя числами - координатами по этим двум осям).
б)(5) A есть множество всех клеток, каждая из которых бьется хотя бы одним из 100 ферзей, расположенных каким-то фиксированным образом.  


Показать решение