Условие

В квадрате клетчатой бумаги 10×10 нужно расставить один корабль 1×4, два — 1×3, три — 1×2 и четыре — 1×1. Корабли не должны иметь общих точек (даже вершин) друг с другом, но могут прилегать к границам квадрата. Докажите, что

а) если расставлять их в указанном выше порядке (начиная с больших), то этот процесс всегда удается довести до конца, даже если в каждый момент заботиться только об очередном корабле, не думая о будущих;

б)* если расставлять их в обратном порядке (начиная с малых), то может возникнуть ситуация, когда очередной корабль поставить нельзя (приведите пример).


Показать решение