Тема урока: "Сложное строение атома. Опыты Резерфорда. Квантовые постулаты Бора"

Тип урока: урок изучения нового материала

Вид урока: урок-конференция, урок-лекция

Цель урока: через анализ фундаментальных исторических опытов подвести учащихся к пониманию квантовой природы атомной системы.

Задачи урока:

·         Познакомить учащихся с историей развития взглядов на строение атома, повторить фундаментальные опыты Резерфорда. Изучить постулаты Бора.

·         На примере истории развития научных представлений о строении атома формировать у учащихся научное мировоззрение, умение выделять и описывать физические явления, строить гипотезы.

·         Формировать умение самостоятельно работать с различными источниками информации, обобщать материалы, развивать монологическую речь.

·         Показать роль крупных ученых в развитии науки

Демонстрации и материалы к уроку:

·         Представление ученических рефератов и презентаций по истории развития взглядов на строение атома

·         Диаграмма энергетических состояний атома водорода (рисунок — в дополнительном материале.)

План урока.

Этап урока

Приемы и методы

Время, мин

1

Постановка задачи урока

 

 

2

Представление исследовательских ученических работ по истории развития взглядов на строение атома

Рассказ учащихся, демонстрация слайдов

 

3

Постулаты Бора

Рассказ учителя, работа с опорным конспектом, анализ диаграммы энергетических уровней водорода

 

4

Решение качественных задач

 

 

5

Подведение итогов и домашнее задание

Составление учащимися синквейна по теме “Атом”

 

 

Ход урока:

1. Задача нашего урока – совершить экскурс в историю развития взглядов на строение атома, начиная с древних времен до начала 20-го века, познакомиться с фундаментальными экспериментальными и теоретическими работами конца 19-го – начала 20-го века, которые перевернули представления об атоме и привели к созданию новой квантовой модели атома.

2. Из истории развития взглядов на строение и природу атома (представление работы учащихся)

·         Гипотеза о существовании атомов, тех неделимых частиц, различные конфигурации которых в пустоте образуют окружающий нас объективный мир, так же стара, как и наша цивилизация. Понятие атома существует уже по крайней мере 25 столетий.

·         Демокрит (460-370 гг. до н.э.). Демокрит происходил из богатого и знаменитого рода в Северной Греции. Все доставшиеся ему в наследство деньги он потратил на путешествия. За это его осудили: по греческим законам растрата отцовского имущества являлась серьезным преступлением. Но он был оправдан, так как ему удалось доказать, что в своих путешествиях он приобрел обширные знания. В конечном счете, горожане признали Демокрита мудрецом и выделили денежное содержание, которое позволило ему продолжать научные занятия. Основные элементы его картины природы таковы:
-Все тела состоят из атомов, которые неделимы и имеют неизменную форму.
-Число атомов бесконечно, число различных типов атомов тоже бесконечно.
-Атомы обладают различными выступами, углублениями и крючками, позволяющими им сцепляться друг с другом и тем самым образовывать устойчивые соединения. Философ был настолько убежденным атомистом, что даже человеческую душу представлял в виде комбинации атомов.

·         В России идеи о мельчайших частицах вещества развивал Михаил Васильевич Ломоносов (1711-1765).

Различая два вида частиц материи, он дает им названия “элементы” (равные понятию “атом”) и “корпускулы” (равные понятию “молекула”). По Ломоносову, “элемент есть часть тела, не состоящая из каких-либо других меньших частиц”, а “корпускула есть собрание элементов в одну небольшую массу”.

·         Английский ученый Джон Дальтон (1766-1844) впервые предпринял попытку количественного описания свойств атомов. Именно им было введено понятие атомной массы и составлена первая таблица относительных атомных масс различных химических элементов. При этом атом представляется как мельчайшая неделимая, то есть бесструктурная, частица вещества.

·         Однако, к концу 19-го века появляются неопровержимые факты, свидетельствующие о сложном строении атома. Наиболее серьезный удар по привычным представлениям об атомах нанесло открытие электрона – частицы, входящей в состав атома.

На исходе 19-го века было проведено много опытов по изучению электрического разряда в разреженных газах. Разряд возбуждался между катодом и анодом, запаянными внутри стеклянной трубки, из которой был откачан воздух. При достаточно большой разности потенциалов между катодом и анодом наблюдалось свечение газа внутри трубки. При сильном разрежении (создании вакуума) свечение внутри трубки исчезало, темная область вокруг катода расширялась, пока не достигала противоположного конца трубки, который начинал после этого светиться (цвет свечения зависел от сорта стекла). То, что проходило от катода и заставляло светиться стеклянный экран, было названо катодными лучами.

Чтобы определить природу катодных лучей, английский физик Джозеф Джон Томсон (1856-1940) проводит следующий эксперимент. Его экспериментальная установка представляет собой вакуумную электронно-лучевую трубку (рис.). Накаливаемый катод К является источником катодных лучей, которые ускоряются электрическим полем, существующим между анодом А и катодом К. В центре анода имеется отверстие. Катодные лучи, прошедшие через это отверстие и движущиеся прямолинейно со скоростью v, попадают в точку G на стенке трубки S напротив отверстия в аноде. Если стенка S покрыта флуоресцирующим веществом, то попадание частиц в точку G проявляется как светящееся пятнышко. На пути от A к G частицы проходят между пластинами конденсатора CD, к которым может быть приложено напряжение от батареи.

Если включить эту батарею, то пучок частиц отклоняется её электрическим полем и на экране S возникает пятнышко в положении G1. Создавая в области между пластинами конденсатора ещё и однородное магнитное поле, перпендикулярное плоскости рисунка (оно изображено точками), можно вызвать отклонение пятнышка в том же или обратном направлении. Томсон обнаружил, что катодные лучи ведут себя как отрицательно заряженные частицы: “Поскольку катодные лучи несут отрицательный заряд, отклоняются под действием электростатической силы, как если бы они были отрицательно заряженными, и реагируют на магнитную силу точно так же, как реагировали бы на неё отрицательно заряженные тела, двигавшиеся вдоль линии распространения лучей, я не могу не прийти к заключению, что катодные лучи суть заряды отрицательного электричества, переносимые частицами материи. Тогда встаёт вопрос: что это за частицы? Являются ли они атомами, молекулами или материей в более тонком состоянии разделения? С целью пролить некоторый свет на этот вопрос я провёл целый ряд измерений отношений массы этих частиц к величине заряда, переносимого ими.”

Опыты проводились таким образом, что отклонение катодных частиц (корпускул, согласно терминологии Джозефа Джона Томпсона) электрическим полем было скомпенсировано воздействием магнитного поля (пятнышко при этом возникало в точке G). Приравняв действующие на частицы силы, можно найти отношение e/m заряда частицы к её массе. Он оказался почти в 1840 раз больше, чем удельный заряд самого лёгкого иона водорода, который был определён до этого из других опытов. Если считать, что заряд корпускулы равен по модулю заряду иона водорода (), то масса катодной частицы оказывается почти в 1840 раз меньше массы иона водорода.

Так открыли первую элементарную частицу с массой кг и с наименьшей величиной электрического заряда. В дальнейшем она получила название "электрон". 30 апреля 1897 г., когда Джозеф Джон Томсон доложил о своих исследованиях, считается “днём рождения” электрона.

После открытия в 1897 году электрона, входящего в состав атома, был сделан вывод о сложном строении атома. Первая достаточно разработанная модель атома была предложена Томсоном. Согласно этой модели вещество в атоме несет положительный заряд и равномерно заполняет весь объем атома. Электроны “вкраплены” в атом, словно изюм в булку.

Возникал вопрос о том, как электроны распределены в атоме? Эти сведения можно было бы добыть с помощью следующего опыта. Тонкие пластинки вещества бомбардируются различными частицами, и по отклонению этих частиц можно получить сведения об атомах вещества пластинки.

·         Этой задачей занялся Эрнест Резерфорд (1871-1937 гг.) – английский ученый, известный своими исследованиями строения атома и радиоактивности, один из создателей атомной и ядерной физики. Резерфорд был членом Лондонского королевского общества – академии наук Англии, почетным членом более 30 академий и научных обществ разных стран мира, в том числе Академии наук СССР. В 1908 году он был лауреатом Нобелевской премии за исследования радиоактивности.

Научная школа Резерфорда стала одной из крупнейших за всю историю физики и самой большой в истории ядерной физики. Учениками Резерфорда были Чедвик, Бор, из советских физиков – Петр Капица, Юлий Харитон и другие.

В своих воспоминаниях Петр Капица писал: “Я не могу вспомнить другого ученого - современника Резерфорда, в лаборатории которого воспитывалось бы столько крупных физиков. История науки показывает, что крупный ученый – это не обязательно большой человек, но крупный учитель не может не быть большим человеком”.

В лаборатории Резерфорда были проведены следующие эксперименты (см. рис.). В качестве бомбардирующих частиц взяли тяжелые частицы, которые лучше всего подходили для изучения строения атома. Чтобы по возможности точнее исследовать единичные столкновения частиц с атомами мишени, было желательно, чтобы сама мишень была как можно тоньше. К счастью, золотая фольга обладает тем замечательным свойством, что путем расплющивания ее можно сделать исключительно тонкой, толщиной всего лишь в 400 атомов золота.

В ранних экспериментах исследовались малые углы рассеяния и было обнаружено, что практически все частицы проходили через мишень, не отклоняясь, как если бы атомы мишени были совершенно прозрачны для бомбардирующих частиц (угол отклонения порядка одного градуса).

Затем молодому сотруднику Марсдену было поручено выяснить вопрос о том, могут ли частицы рассеиваться на большие углы? И вот в 1909 году наступил тот зимний день, когда Марсден остановил на университетской лестнице Резерфорда и совсем буднично произнес:”Вы были правы, профессор: они возвращаются…” (Позже Резерфорд вспоминал: “Это было самым невероятным событием в моей жизни. Оно было столь же невероятным, как если бы 15-дюймовый снаряд, выпущенный в кусок папиросной бумаги, отскочил от нее и ударил бы в стреляющего”). “Они” возвращались редко: в среднем одна частица из восьми тысяч. Отражение от мишени означало, что частица встретила на пути достойную преграду – массивную и положительно заряженную: только такая может с силой оттолкнуть от себя прилетевшую гостью. Редкость события говорила о крайне малых размерах преграды. И потому, пронизывая атомы мишени, лишь немногие частицы попадают в массивную атомную сердцевину. Подавляющее большинство пролетает в отдалении от нее и рассеивается на малые углы.